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An integral equation technique for the Neumann problem of finding a function @ satisfying 
A@ = 0 with prescribed values of a@/& on the boundary is described. Fourier representation 
of the potential 9 on the boundary with respect to two angle-like variables transforms the 
integral equation to an inlinite set of linear equations for the Fourier coefficients of @. The 
singularity of the Green’s function is treated by a regularization method: a function with the 
same singularity is subtracted and its analytically calculated Fourier-transform is added to the 
Fourier transformed integral equation. A computer code named NESTOR is developed. 
Applications include studies of toroidal magnetic vacuum fields and calculation of the vacuum 

field contribution for the 3D free-boundary equilibrium problem. 0 1986 Academic PKSS, IIIC. 

1. INTRODUCTION 

Let D denote the interior and D” the exterior of a toroidal region with the boun- 
dary i?D and let B0 be a magnetic field 

curl B, = j, div B, = 0 (1.1) 

produced by a current j in D u D’ (Fig. 1). There then exists a magnetic vacuum 
field B = V@ in D such that the superposition of the two fields is tangential on the 
boundary i?D, 

(B, + V@) . n = 0, (1.2) 

and that the potential @ is single valued (n = the exterior normal to LID). The 
potential function @ is the solution of the interior Neumann problem: it satisfies the 
Laplace equation A@ = 0 in D and the normal derivative a@/& takes given values 
on the boundary aD. The solution is unique up to a constant [ 11. 

By means of Green’s theorem the Laplace equation for @ can be converted into 
an integral equation 

aG(x’ “) @(x’) =$ j-, df’G(x, xt) p, (1.3) 
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FIG. 1. View of toroidal domain. 

where x, x’ are points on the boundary do, and G(x, x’) = l//x - x’I is the Green’s 
function. With condition (1.2) the right-hand side of the integral equation is known 
and is considered to be a source term. 

The solution of the integral equation gives the potential @ on the boundary. The 
potential @ in the interior of the toroidal region is then obtained from the potential 
and its normal derivative on the boundary by 

qx) = -& jdD df’ aG&x” qx’) +& jaD df’G(x, x’) p, (1.4) 

where x are points in the interior of the region D. 
A potential function @ is obtained in exactly the same way by solving the exterior 

Neumann problem: it satisfies the Laplace equation in D" and the condition (1.2) 
on the boundary aD. The potential function Qi is unique up to a constant. 

Integral equation techniques for solving the Laplace equation have been applied 
in different fields. For example, the incompressible potential flow around three- 
dimensional bodies has been treated [2]. For other applications see [3, 4, 5-J. Most 
applications concern simply connected boundaries. 

In toroidal geometry the solution of the integral equation is given by Martensen 
for axisymmetric boundaries [6]. In the 2D ERATO code for stability analysis of 
axisymmetric equilibria, the same Green’s function method is applied to calculate 
the vacuum energy contribution [73. The HERA code, an extended version of 
ERATO for stability analysis of helically symmetric equilibria, also provides for 
calculation of the vacuum contribution by solving the integral equation [8,9]. 



INTEGRAL EQUATION FOR NEUMANN PROBLEM 85 

The present paper presents an integral equation method for general toroidal 
geometry. Two applications appear to be of interest. 

As solution of the exterior Neumann problem, the vacuum field contribution in 
the 3D MHD equilibrium problem can be calculated to study the free-boundary 
equilibrium, including the field produced by external currents. In the BETA code 
[lo] the vacuum energy problem is treated as a variational problem by considering 
the Dirichlet integral j (VP)’ dV. The discrete approximation leads to difference 
equations in the vacuum region and therefore requires a second outer control sur- 
face to keep the vacuum region finite. By solving the integral equation on the boun- 
dary ao one gets a solution for the Neumann problem in the infinite region exterior 
to the plasma surface do. 

As solution of the interior Neumann problem, toroidal vacuum fields can be 
generated with a magnetic surface on the boundary. There are conjectures that for 
appropriate boundaries it is possible to find configurations with “good” magnetic 
surfaces in the whole region. The problem of finding such configurations has been 
tackled by various methods: superposing special harmonic functions [ll]; remov- 
ing islands by appropriate correction fields [12]; and also solving the boundary- 
value problem by difference methods for Laplace’s equation [ 131, but only for a 
restricted class of Heliac-type boundaries. 

Here, the integral equation is treated for general three-dimensional toroidal sur- 
faces. Because of the toroidal geometry it appears appropriate to introduce angle- 
like variables u and u. The surface i3D and the potential function Q, are represented 
by Fourier series of u and u. Then, from the Fourier transform of the integral 
equation, one gets an infinite set of linear equations for the Fourier coefficients of 
the potential @. The equations are solved approximately by neglecting higher har- 
monics. 

The singularity of the Green’s function and its normal derivative are treated by 
the following regularization method: functions are introduced with analytically 
calculable Fourier transform and the same singular behaviour as the Green’s 
function and its normal derivative. They are subtracted, the nonsingular difference 
is Fourier-transformed by a standard numerical method and the analytically 
calculated singular part is added again. 

2. SOLUTION OF THE INTEGRAL EQUATION 

The interior Neumann problem for a toroidal region D with the boundary aD is 
considered. The boundary CJD is assumed to consist of nP toroidal periods, and the 
normal derivative &D/an on the boundary is assumed to have the same periodicity. 
With angle-like variables u and u introduced, one period of the boundary is given 
by mapping the unit square 0 < u < 1, 0 < u < 1 onto the surface dD, 
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mh, nh 

r= c 
r̂  

mn 
e2ni(mu + no) 

7 
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mh. nh 

z= c 
f 

mn 
e2ai(mu + no) 

3 

m= -nq),n= -nh 

i* =r^-,-,, Inn 

&+* =5 In” --m--n, (2-l) 

+, 
P 

where (r, 4, z) are cylindrical coordinates. 
With u and u as independent variables, the integral equation (1.3) takes the form 

qu, u) + f; 5,’ du’ dv’g(u, 0, u’, v’) @(u’, v’) = 1; f’ du’ du’h(u, 0, u’, v’), (2.2) 

where the kernel is given by 

g(u, u, u’, 0’) = & 
n 
f 

(x - x’w). [xy) )( xyq 

I=1 /x - x’u)l 3 

and the source term is defined by 

(2.3) 

(2.4) 

In terms of Cartesian coordinates the indexed vectors x(‘) are defined by 

i 

r(u, u) . cos(2n(Z- 1 + u)/n,) 
xc’)= r(u, v). sin(27r(I- 1 + u)/n,) , 

i 

I= l,..., np, (2.5) 

z(u, v) 

and XL’), xi’) are the derivatives with respect to u and v resp.: x,:= (a/au) x. The vec- 
tor x is identical with x E x(i). 

The potential @(u, u) is a periodic function of u and v. It is therefore reasonable 
to express @ as a Fourier series: 

(2.6) 

with the reality condition 62, = 6, ~“. 
With this ansatz substituted in the integral equation (2.2), the Fourier transform 

with respect to u and v leads to an infinite set of linear equations for the Fourier 
coefficients @,,, 
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where the matrix elements g,,,,,,, and the source term elements h,, are 

L”,=j; jb’ji J-i du’ du’ du d” g(u, u, ut, “I) e2ni(m’u’ + n’u’ - mu-m) 
(2.8) 

and 

L = J-i 1’ j; I,’ du’ du’ du dv h( u, v, u’, u’) e -2ni(mu +n”). (2.9) 

The main difficulty consists in the calculation of the Fourier transforms (Eqs. 
(2.8) and (2.9)). Because of the singularity in g(u, u, u’, v’) and h(u, u, u’, u’) at 
Ix -xx)1 = 0 it is not possible to use the standard numerical Fourier transform 
methods. 

A regularization procedure therefore has to be applied: one has to find a function 
with the same singular behaviour which can be analytically Fourier-transformed 
with respect to u and u. With Ix - ~‘1 expanded for fixed values of U’ and u’ at the 
singular point, the singular part of the Green’s function takes the form 

hw 
Bb. [x’,$‘)x x’j”] 

(x5 (u - 24’)2 + 2x;,x;.(u - u’)(u - u’) + xy (u - u’)2)“2’ 

where XL,, x:, are regular for all values of u’, u’. A similar behaviour follows for g. 
The following periodic functions are introduced: 

Pg(z4 - u’, u - VI, u’, u’) 

F 

= 2(a tan2 n(u - u’) + 2b tan rr(u - u’) tan n(u - u’) + c tan’ rc(u - u’))‘/~ 

and 

gsing(z4 - u’, u - u’, u’, u’) 

A tan2 n(u - u’) + 2B tan rc(u - u’) tan K(U - u’) + C tan’ n(u - u’) 
= 2(a tan2 X(U - u’) + 2b tan rc(u - u’) tan n(u - u’) + c tan2 n(u - u’))~‘~ 

with the coefftcients 

and 

a=xL?, b =x:.x:., c=x;: 

/j =-Ix’ 
2 u’u’ - [XL, x x:,1, 

B=“x’ 
2 u’u’ - [XL, x x:*1, 

c = 4x:,“, * [XL, x xi,], 

F= - Bb * [XL, x XL,], 

where XL,,,, x:,,,, x:.,, are the second derivatives (XL,,,:= (a2/M2) x’). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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If these functions are considered for fixed values of U’ and v’ as functions of u and 
v, they have the desired singular behaviour and can be analytically Fourier-trans- 
formed with respect to the variables u and v, shown in the Appendix. 

With these analytically calculated integrals, the matrix elements g,,,,,, can be 
written as 

du dv du’ dv’(g(u, v, u’, v’) 

-gsing(u- uI, ” _ “I, uI, “0) e2ni(m’u’+n’v’--mu--nv) 

with 

+ jo’ j,’ du’ dv’ g~(~f, “0 e2ni((m’-m)u’+(n’-n)U’) (2.14) 

dudvg~iW(u-U’, “-“‘, u’, v’)e-2”““‘“--u’)+n(v-v’)). (2.15) 

The integrands in Eq. (2.14) are finite and can be Fourier-transformed by standard 
numerical methods, while the integral in Eq. (2.15) is calculated analytically (see 
Appendix). The source term is treated in exactly the same way: 

Ln = j; j; j; j; du dv du’ dv’(h( u, v, u’, v’) - hsing( u - u’, u - II’, u’, v’)) e - 2ni(mu + m”) 

+ j,' jol du' do' j+"(ur, "') ,-2ni(“‘u’+nv’) (2.16) 

with 

duf dvf hsing(U _ Ur, v _ “1, u’, “0 e-2~i(“(~-u’)+n(u--‘)). (2.17) 

These equations are derived for the interior Neumann problem. One gets the 
solution for the exterior Neumann problem by changing the sign of the surface 
integrals in the integral equations (2.2). 

3. NUMERICAL APPROXIMATION AND RESULTS 

One purpose of applying the solution method to the interior Neumann problem 
is to find toroidal vacuum fields with “good” magnetic surfaces and other desired 
properties, e.g., a magnetic well and a prescribed slope of the rotational transform. 
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These solutions can serve as suitable starting configurations to study stellarator 
plasma equilibria. 

The field produced by a line current along the z-axis is chosen as external 
magnetic field B,, 

B,,- (B,, B,, B,)= O,;, 0 . 
( > 

(3.1) 

The boundary coordinates are given as Fourier series (Eq. (2.1)) of ZJ and IL For 
stellarator configuration studies one usually considers fields with a symmetry which 
reads for the vacuum potential @(r, -4, -z) = -@(r, 4, z) and for the boundary 
coordinates r( - U, -0) = r(u, v), z( - U, -u) = -z(u, u). In this particular case the 
generally complex matrix elements g,,,,,, become real, and the h,, and the Fourier 
coefficients of the potential &m, are purely imaginary. 

The integral equation is approximated by truncating the infinite set of equations 
(2.7). Choosing appropriate integers M and N and neglecting all Fourier harmonics 
m, n with [ml > M and InI > N, one obtains the Fourier components of the poten- 
tial d,,,, by 

M. N 
dm, + 1 g,,,~,f d$,f = 6,” for [ml GM, InI <AC (3.2) 

,,,‘= -MM,,,‘= -N 

The matrix elements g,,,,,,,, (Eq. (2.8)) and &,,, (Eq. (2.9)), which are four-dimen- 
sional Fourier integrals, have to be calculated numerically. If an equidistant mesh 
in the U, u unit square with N, and N, intervals is introduced, the mesh points are 
given by 

j uj=-, 
Nl4 

j=O, N,- 1, 

k 
vk=-, 

NO 
k=O, N,- 1. 

(3.3) 

A Fourier integral is approximated by the discrete Fourier transform [14, 151 
defined here for the potential 

c&” = (3.4) 

To get an approximation for Fourier components ImJ < M and InI < N, the number 
of mesh points N,, N, is chosen so that N, 2 2(M+ l), N, 3 2(N + 1). 

The error of the numerical solution for the Fourier harmonics &,, is composed 
of the discretization error due to the discretization in real space (N,, N,) and the 
error due to the truncation (M, N) of the infinite set of equations for the &m,. It 
can be advantageous to separate these two contributions by using a fine N,, N, 
mesh even if a small number of harmonics dm,, are taken into account. 
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The amount of numerical work is essentially determined by the number of N,, N, 
mesh points in real space and is proportional to NZN:. The computation time for a 
case with N, = 32, N, = 32, A4 = 10, N = 6 is about 5 set on a CRAY-1. 

The magnetic field in the region D is then obtained from Eq. (1.4), 

B=B,+$G( x, x’)(Wodf’)--& j @(x’)V(V’G(x, x’)*df’), (3.5) 

or, introducing the surface current density 

j= -& [nx(B,+V@)], (3.6) 

one can transform Eq. (3.5) into the Biot-Savart formula 

B= -1 df’j’xVG(x, x’). (3.7) 
dD 

For numerical field calculations the former representation of B (Eq. (3.5)) has the 
advantage that also the discretized form of Eq. (3.5) exactly satisfies div B = 0 and 
curl B = 0, because of dG(x, x’) = 0 and curl VG(x, x’) = 0. The integrals are dis- 
cretized with respect to the integration variable x. The differentiation with respect 
to the unprimed variable is therefore not affected. 

The NESTOR (NEumann Solver for TOroidal Regions) computer code was 
developed [ 163 for solving the integral equation by the above-described technique. 
Some applications to the interior Neumann problem are presented. 

Figure 2 shows a comparison of an analytically calculated 1= 2 stellarator 

FIG. 2. The Poincark plot of an analytically calculated I = 2 stellarator field (. . ) is compared with 
the numerical solution of the boundary-value problem (x x x ). Discretization of boundary (-) 
N, = 32, N, = 32 poloidal and toroidal mesh points, number of toroidal periods np = 5, number of 
Fourier harmonics d,,,” taken into account M = 10, N = 5. 
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vacuum field and the numerical solution of the corresponding boundary-value 
problem. This field is produced by a special choice of Dommaschk potentials [ 173, 

X (( 
z3r a ~dyC.o+zr3~ ;-icm,, a (’ N ))sin*fJ+(fCE,0+Ct,I)cosm4) 

with 
C,“,, = (P - rpm)/2m, 

C,N,I=(-(m-l)r”+2+(m+1)r” 

-(m+ l)rem+* +(m-1)r-m)/8m(m2-1). 

(3.8) 

(3.9) 

The number of periods is m = 5 and the coefficients are a = - 1.495873, 
b = - 3.270651. The configuration has magnetic surfaces. For the numerical 
calculation one of the outer surfaces is chosen as boundary and a Fourier series 
representation of that surface is approximately determined. The coordinates of 
boundaries with stellarator symmetry can be written as 

WT. 4 
r = C Cm, n cos(mu + nu), 

m=O,n= -nh 
(3.10) %r n/l 

z = 1 C;, n sin(mu + nu). 
m=O,n= -nh 

TABLE I 

Fourier Coefficients cm,,, C& of the Boundary for the I = 2 Stellarator Contiguration 

A4 

\ 
N 0 1 2 3 

CT” 
-2 
-1 

0 
1 
2 

c:, 
-2 
-1 

0 
1 
2 

0.000056 -0.000067 0.000373 0.000462 
-0.000921 -0.034645 0.000575 -0.001509 

0.997922 0.093260 0.002916 0.001748 
-0.000921 0.ooo880 -0.000231 -0.000239 

O.OOCO56 0.cm178 0.000082 0.000052 

0.000076 0.000069 -0.000374 -0.000518 
0.000923 0.035178 0.000257 0.002233 
O.OOOOOO 0.099830 0.003096 0.001828 

-0.000923 0.000860 0.00032 1 0.000257 
- 0.000076 -0.000179 o.OOOOO7 o.cmO35 
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4 3 

FE. 3. Poincare plot of an I= 1, 2, 3 stellarator field [18]. Aspect ratio A= 13, number of periods 
np = 5, poloidal and toroidal mesh for boundary N, = 32, N, = 32. Number of poloidal and toroidal har- 
monics taken into account M = 10, N = 6. 

The Fourier coefficients for the I = 2 stellarator configuration are given in Table I. 
With this surface as boundary, the integral equation is solved. Poincare plots of the 
magnetic field are shown in Fig. 2. The dots are obtained from the analytical poten- 
tial (Eq. (3.8)) and the crosses from the numerical solution of the boundary-value 
problem with the boundary plotted as a solid line. The results are in good 
agreement. 

To illustrate possible applications in Figs. 3 and 4, Poincarb plots are shown for 
stellarator vacuum fields with I= 1,2,3 field content. The two configurations differ 
from each other just in their aspect ratios: A = 13 and A = 4. The shapes of their 
boundaries as a function of 4 are kept fixed. The Fourier coefficients of their boun- 
dary coordinates (Eq. (3.1)) are given in Table II. 

I 7 
+ 

I 7 
+ 

I I 
I 

FIG. 4. Poincare plot of an I = 1, 2, 3 stellarator field. Aspect ratio A = 4, number of periods np = 5, 
poloidal and toroidal mesh for boundary N, = 32, N, = 32. Number of poloidal and toroidal harmonics 
taken into account M = 10, N = 6. 
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TABLE II 

Fourier Coefficients Cm”, C;” of the Boundaries for the I = 1, 2, 3 Stellarator Contlgurations with Aspect 
Ratio A = 4 and A = 13 

\ 
M 

N 0 2 

A=13 
CL” 

-2 
-1 

0 
1 

-2 0.0 0.0 -0.07 
-1 -0.2 0.255 0.24 

0 0.0 1.1 0.05 
1 0.2 - 0.035 0.0 

A=4 
cb" 

-2 
-1 

0 
1 

C,” 
-2 
-1 

0 
1 

0.0 0.0 0.07 
0.4 -0.325 0.24 

12.85 0.9 0.05 
0.4 -0.035 0.0 

0.0 0.0 0.07 
0.133 -0.325 0.24 
4.283 0.9 0.05 
0.133 - 0.035 0.0 

0.0 0.0 -0.07 
-0.067 0.255 0.24 

0.0 1.1 0.05 
0.067 -0.035 0.0 

~~I’,,,,,,,,,,,,,,,,,,,,,,,,,, -:::-:/ 
13.90 13.4? 

FIG. 5. The rotational transform r for configurations shown in Figs. 3 and 4 are plotted versus radius 
from the magnetic axis to the boundary. 
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The A = 13 case shows a set of magnetic surfaces. Islands are not resolved. For 
the A = 4 configuration a chain of islands is resolved, where the rotational trans- 
form I crosses the rational value r = $. The rotational transform r versus radius is 
shown in Fig. 5 for both configurations. 

The finite j plasma equilibrium and stability properties of the A = 13 case have 
been studied by Niihrenberg and Zille [18]. In the 3D equilibrium codes [lo, 19, 
201, which assume nested toroidal flux surfaces, island formation is not resolved. It 
is thus useful to include vacuum field calculations, which allow the analysis of 
islands at least in the vacuum field. In the present case no dangerous island regions 
appear. 

4. CONCLUSIONS 

A Green’s function method for solving the interior and exterior Neumann 
problem for toroidal regions is described. The NESTOR computer code for 
implementing this method was developed and succesfully applied. First results show 
that the method can be another tool for studying toroidal vacuum field con- 
figurations. To apply the method to the free-boundary 3D equilibrium problem, the 
coupling of NESTOR to the MOMCON 3D equilibrium code [20] is being 
implemented. 

APPENDIX 

For the regularization of the integral equation (1.3) one needs the two-dimen- 
sional Fourier transform of singular functions given by 

1 1 

Is 
e2ni(mu + nv) 

I,, = 71 du dv 
0 0 (a tan*(rru) + 26 tan(rcu) tan(7cu) + c tan2(rru))‘/” 641) 

I 1 

K,,,,=rc ff 
du dv (A tan2(rcnu) + 2B tan(au) tan(rcv) + C tan*(?m)) e2ni(m”+nu) 

0 0 (a tan2(7m) + 2b tan(nu) tan(no) + c tan2(xv))3’2 

with UC - b* > 0. The integrals K,,,, can be derived from the integrals Z,, by differen- 
tiation: 

Km,,= -2 A$+B&,+c$ 
> 

I,,,,. 

To compute the I,,,, a generating function I is introduced: 

co, ,=a 
I= c zmnsmtn. 

m=O,n=O 
(A4) 
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Summing up the power series, one obtains I in closed form: 

95 

1 1 
I=n ss du dv 

0 0 (1 - SfP”)( 1 - te2=j” )(a tan2(nu) + 2b tan(rcu) tan(nu) + c tan2(nu))‘/2’ 

(A5) 

Introducing new variables r, y 

one get for Z 

y = tan nu, 

ry = tan rev, 

‘=if’” f+w drdy(j&+) (&jj-5) (u+2br1+cr’)‘li (W ‘x2 -02 
with 

l-s 
a=l+s, 

l-t fi=- 
1 +t’ 

Integrating Z with respect to y, one obtains 

If the integration variable x = (1 - r)/( 1 + r) is introduced and tl and B are again 
expressed by s and t, the function Z can be written as a sum of four terms: 

z=h+(s,t)+h+(O,O)+h-(s,O)+h-(O,t), 048) 

where the function h is defined by 

h+(s,t)=(l+s)(l+r) +’ s dx 
2 e-1 (l-st-(s-t)x)(a’ +2dx+a*x2)1’2 

and the coefficients are given by 

u+=a+2b+c, 

U- =a-2b+c, 

d=c-a. 

649) 

(AlO) 
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The final step in calculating the Im,, is to expand I again as a power series in s and t. 
One starts by expanding the function h 

(All) 

with 

T,* =]+‘dx 
/ 

(a+ + 2d:+ u*x2)1/2’ 6412) -I 

Expanding h further, one finally obtains for the coefficients I,, 

C~~+Cm+-~n+C~“-,+Cm+-~“-~ for mal,nal, 

Iml = 
c~++cm+-lo+c;~ +c;-,o for ma l,n=O, 

co’, +c&-1 +c, +cOn-I for m=O,n> 1, (Al3) 

c& +c& +c, +c, for m=O,n=O, 

with 

~m+n~-(m~-n,~,2(-l)‘+‘m-n’-m+n 
c& = c 

m+n+2’m--n’ +I)! T$-n,+2, 
. (A14) 

I=0 , m+n-lm-rz[ 
2 

-I ! (Im-nl +I)! I! 

The functions T: defined in Eq. (A12) can be calculated by using a recurrence 
relation. Expressing the coeffkients a+, a ~, d by u, b, c (see Eq. (AlO)), one obtains 

T; =(l/,/ii)log(,/~+cfb)/(,/~-uTb), 

Tf =(l/&?i+(2(&-/a)-(c-a) T$), 

T: =(1&/=)(2(&+(-l)‘&) 
(AW 

-(21-l)(c-u)T~~,-(Z-l)(u~2b+c)T~~,) for 122. 

The Fourier integrals K,, follow from the I,, by differentiation (see Eq. (A3)). For 
the K,,,, one gets the same formulas, (A13), (A14), as for the I,,; only the integrals 
Tf have to be replaced by integrals S,*, which are given by 

(A- +2Dx+A+x”) 
‘: =1_+,l dxx’(u- +2dx+u+x2)3,2 

with 
A+=A+2B+C, 

A-=A-2B+C, 

D=C-A. 

6416) 
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As for the T: , recurrence formulas can be derived for the SF, but the SF can also 
be expressed in terms of the T: by appropriate partial integration. One obtains for 
v 

(a + 26 + c)(ac - b2) S; 

=((A+2B+C)(ac-b2)+I(k,(a+2b+c)+k2(c-u)))T; 

+ I(k,(c - a) + k,(u - 2b + c)) T,t , 

(c+b)k,+(c--b)kz_(_l),(u+b)k,-(u-b)k, 

J & 
6417) 

with 

k,=4(u+c)B-4(A+C)b, 

k, = 4C(u + b) - 4B(c - a) - 4A(c + b). 

The formula for S, is obtained by replacing b by -b and B by -B, and T,? , T;- 1 
with T;, T;-,. 

For large m and n an asymptotic expansion can be derived for the Fourier 
integrals I,, and K,,,,. For UC - b2 > 0 the leading terms are [21] 

Ln = 
1 

(an2 - 2bnm + cm2)lf2’ 

Km = 
An2 - 2Bnm + Cm2 

(an2 - 2bnm + cm2)3/2’ 

(‘418) 
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